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For a number of loaded elastic shells the so-called upper critical load qu defined in 
connection with the treatment of the linearized problem exceeds by several times the critical 
load qexp found in most of the experimental papers; the experiments give a large scatter in 
qexp (from 0.i qu to qu)- These facts are explained at present by the effect of initial 
inaccuracies in the shape of the shells~ Attention should be given to the problem of the 
stability of shells on the basis of the distinctive features of the spectrum of their eigen- 
frequencies. In this connection we will point out that a thorough review of the contem- 
porary state of the theory of the distribution of eigenfrequencies of elastic shells is con- 
tained in [i]. It is shown in [2] that there exists a class of Shell stability problems in 
which the distribution of the eigenvalues starts from a condensation point, and therefore 
the normal transition for shell theory from the discussion of a system with an infinite number 
of degrees of freedom to the study of a system with one degree of freedom is incorrect. 
Subsequently, a theory [3] for the approximation of such distributed systems by finite-di- 
mensional systems has been constructed~ 

i. The essential characteristic of the problems under discussion here consists of the 
fact that at some q < qua new stable equilibrium state appears with a lower system energy 
and that the stability is disrupted in modes having a very large number of bends, i.e., as 

" ~ ~ i/2 the load increases, frequencies ~i with i = n n- (usually n ~ i0-i00, depending on the 
shell thickness) undergo the greatest change~ The frequency branches of el(q) intersect with 
the branches corresponding to i < n as the load increases, but at q = qu one of them (~N) 
vanishes. 

With such a nature for the dependence mi(q) it is necessary to take into account in the 
equations of elastic vibrations anharmonic effects produced by quadratic nonlinearity, which 
result in combination vibrations of weak intensity being superimposed on vibrations with 
frequencies ~i" In addition starting from some value q, of the load, such frequency matchings 
are possible when the conditions of internal resonance 

o ~  --Z-- (oj .-.-: o)~,, i .+- ] =:  k (1.1) 

are satisfied. The number of points at which they occur can be estimated from the number of 
2 (~i02_i03) for the problems under dis- coincidences of the frequencies of different modes C N 

cussion). 

The systems under discussion here are subjected to the action of only conservative loads; 
therefore in the case of a random perturbation, which one can represent in the form of a 
set of small vibrations in several modes, internal resonance leads to a redistribution of 
energy among the vibration modes, which can facilitate an increase in the amplitudes of the 
individual modes to values at which irreversible changes will occur in the shell material and 
the stability will be disrupted or the system will jump to another equilibrium state. From 
the point of view of the theory developed in [3], energy redistribution among modes should also 
be considered as a factor which leads to shell instability. Depending upon the initial con- 
ditions, the nature of the loading, and so on, disruption of stability will occur at loads 
from the range [q,, qu]- 

For practical calculations one can take q, to be the value of the load at which the 
intersection of the branches of ~i(q) first occurs. It is defined as the maximum value of 
the load at which d~/di~0 is satisfied for all i. If d~/di < 0 for some i, then slightly 
distinguishable frequencies corresponding to adjacent i are possible which satisfy (i.I) to- 
gether with a small ~i. It is understood that for an accurate determination of the critical 
load with internal resonances taken into consideration knowledge of the form of the non- 
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linearity and the nature of the loading, which is very different in each specific case and 
leads to a complicated problem, are necessary. Consideration of the spectrum of frequencies 
of a linearized system permits indicating for all problems of this class the loads for which 
stability loss is possible. 

2. We discuss two examples. We will use the frequency equations for spherical and cy- 
lindrical shells [4] in the form of [5] supplemented by terms containing a load, which one 
can easily derive after taking into account in the equations the elastic vibrations of the 
forces produced by equilibrium stresses. 

A. Spherical shell under hydrostatic pressure p. The frequency equation is of the form 

2OR ~ k.p l l  
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where h is the shell thickness, R is the radius, p is the density of the material, o is the 
Poisson coefficient, E is the tension modulus, and k = n(n + I), n = 2, 3, .... The well- 
known fact that stability disruption occurs at p ~ (h/R) 2 is used in deriving this relation- 
ship. 

By setting ~2 = 0 and minimizing p with respect to ~, we have 

_ ( L h  

We will make use of the relationship d~/dn~ 0, which one can replace by the equivalent 
inequality d~2/dk~0, in our search for p,~ From this we have 

Plots of Pu and p, and the region of experimental data for Pexp taken from [5] are shown 
in Fig. i; Pu and p, were calculated with o = 0.3. 

B. Cylindrical shell compressed in the axial direction by a force p. The frequency 
equation is of the form 

o 

= ~o- I-I- P l-~ I-- 
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where a = n~(R/~) (n = I, 2 .... ) and ~ is the shell length. 

Similarly to the previous example, we find 

I [ i.,2(,__c/,_) ]1.',~ :h)U.~, p,  ,~ sc a I':"I'~'U" P-* = : ~  I~- 

575 



Plots of Pu and p, and the region of experimental critical loads Pexp [5, 6] are pre- 
sented in Fig. 2. 

We note in conclusion that the load p, found depends upon the shell thickness and agrees 
over a wide range of variation of h with the lower limit of the region of the derived and 
experimental critical loads. Other experimental facts find explanation within the framework 
of the proposed mechanism of stability disruption. In particular, the large scatter of the 
experimental data can be explained by a difference in the initial conditions, the nature of 
the loading, and random dynamical effects, and the decrease of this scatter at small thick- 
nesses is related to an increase in the number of resonance relationships, along with the 
increase in i/h. 

The author expresses his gratitude to G. G. Denisov for help in the research. 
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FIELD OF ELASTOPLASTIC STRAINS IN TIIE MOUTH ZONE 

OF A CRACK 

V. I. Arkhipov UDC 539.374 

When establishing the criterion of failure, the knowledge of the strain and force con- 
ditions in the mouth zone of the crack is of great importance. Dependent on the model of 
elastoplastic strain of this zone, different concepts are proposed for the choice of the 
failure criterion [i]. At the same time it is necessary to take into account the fact that 
a real failure process on the macro scale in the majority of cases has a mixed character [2]. 
Hence experimental and theoretical investigation of the field of elastoplastic strain (EPS) 
in the mouth zone of the crack [3] is of great importance. In [4-6] an experimental analysis 
of the EPS fields in the mouth zone of a crack is carried out by methods of photoelasticity, 
Moir~ and holographic interferometry. In [7-9], by numerical methods, analysis of EPS fields 
is carried out for plane stress and plane strain states. A paper should be mentioned [i0] 
in which by the holographic interferometry method, the field of elastic and residual compo- 
nents ofstrains is determined for a plate loaded by internal pressure. 

i. The Method of Investigation. The investigation was carried out under the normal 
external conditions on flat testpieces of alloy steel 38KhNVA. The testpieces were heat 
treated according to typifying conditions. Hardness HRC = 50. 

In Fig. 1 we have shown the geometry of the testpieces. The origin of the coordinate 
system is connected with the crack tip. The work zone of the testpieces was mechanically 
polished, and was then lapped under a load Po ~ 2kN to obtain a maximum flatness and a satis- 
factory coefficient of light reflection. The testpieces had an initiated fatigue crack. The 
thickness of testpieces t = 2.0 mm. The loading was carried out on a testing machine pro- 
vided with a laser holography system. The loading regime was stepped monotonic tension with 
the load step Ap = 981 H. 
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